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PREFACE

In this RAND Memorandum the authors present further

mathematical results in the problem of radiative transfer

in a one-dimensional medium. This subject has important

implications for meteorology, astrophysics, and the

detection of nuc2ear blasts.

The research presented here was sponsored by the

Advanced Research Projects Agency.
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SUMMARY

In the present Memorandum, by means of the

invariant-imbedding technique, the integral equations

for the reflection and transmission coefficients of

radiation in a one-dimensional medium are obtained,

allowing for the release of absorbed energy with a

random time delay. Farthenmore, the reflected and

transmitted intensities for the fluorescence problem in

a one--dmensional medium are expressed in terms of

these coefficients, assuming no distribution of emitting

sources in the medium.
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INVARIANT IMBEDDING AND TIME-DEPEI)E4DT SCATTERING OF
LIGHT IN A ONE-DIMENSIONAL MEDIUM

1. INTRODUCTION

In a recent series of papers, based on the principle

of invariant imbedding, which stems from the invariance

principles of Ambarzumian and Chandrasekhar, various

kinds of timo-dependent neutron-transport problemis in a

fixed rod of finite length made of fissionable material

were exactly treated by Bellman and Kalaba 1 i] and Wing

[ 12). It was shown that the Laplace rransform of the

integral equation for the reflected flux derived by them

provides an analytic expression of the solution because

of the convolution form of the integral term [101.

Furthermore, the technique was extended [21 to the

derivation of a functional equation governing the

reflected neutron flux from a rod of varying length;

the analytical study of the solution of the partial

differential integral equation was made with the aid of

an iterative procedure [11].

In the theory of radiative transfer, Miss Busbridge

1 51 used the Laplace transform for reducing the non-

stationary transfer equation to the stationary one. The

invariant--imbedding technique and the princlple-of-

invariance method were applied by Bellman, Kalaba, and

Ueno [131, [9] to time-dependent diffuse reflection

problems of parallel rays by an inhomogeneous flat layer.



On the other hand, time-dependent scattering

problews of light in a one-dimensional medium were

discussed by several Russian astrophysicists. Intro-

ducing the duration of temporal capture tI and the

mean free time t2 in formulation of the transfer

equation, Sobolev [8] extended the probabilistic method

to some transient scattering problems. For s.-mplicity,

he derived an exact solution in a semi-infinite

homogeneous medium when t1 >> t 2 . With the aid of the

Laplace transform method, I-1nin [ 7] obtained an explicit

expression of the quantum reflection probability and of

the quantum emergence probability at any level from the

semi-infinite homogeneous medium, allowing for both time

parameters, tI and t 2 . Recently, Kaplan [6] also

extended Sobolev's procedure to the three-dimensional

nonsteady case and discussed the functional equation for

the reflection coefficients in a semi-infinite homogeneous

medium when tI >> t 2 .

In a series of papers, making use of the probabilistic

method, Kaplan and others [6] considered the scattering

of light in a one-dimensional semi-infinite homogeneous

medium with a moving boundary. Biberman and Veklenko [4]

also extended their probabilistic approach to the

derivation of relationships for the generalized

reciprocity principle for noncoherent scattering in

radiative transfer. Lists of many other papers attempting
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to solve the time-dependent transfer process will be

found in the references of our preceding papers [ 3], [9].

In the present Memorandum, the invariant-imbedding

technique is used to derive the integral equations for

the coefficients of reflection and transmission of

radiation by a onc-dimensional homog;eneous medium of

finite optical thickness, allowing for two characteristic

time-scales, t 1  and t 2 . Furthermore, the reflected

and transmitted intensities from this medium, illuminated

by a unit step-function time-dependent pencil of

radiation from outside, are expressed in terms of these

coefficients, assuming no distribution of emitting

sources in the medium.

2. THE EQUATION OF TAI•SFER

Consider a one-dimensional homogeneous medium of

optical thickness Tl > 0, illuminated by radiation of

time-dependent specific intensity 10 incident on the

right-hand boundary T = T, (see Fig. 1). Scattering

of light in either direction is assumed to be equally

probable.

I2( t) tIl(Tl:t)

0 T I I 2 (rlt)

Fig. I

A Time-dependent Transport Process



Let Il(t,t) and 1,(r,t) denote respectively the

specific intensities of radiation at the level T at

time t, directed toward the boundaries T = and

T = 0.

'Thie equation of transfer appropriate to the present

case takes the formi

(2.1) + 1 + I, =

1 2
(2.2) - , + + 12 = B(T,t),

where c is the speed of light, I is the attenuation

coefficient, and D(T,t) is the source function.

Ile assume that the duration of temporal capture,

which corresponds to the mean molecular interaction time

in the kinetic theory, of dilute gases, is equal to tI,

and the probability of emission during the interval of

time (t,t + dt) is given by exp(- t/tl)dt/t 1 .

Assuming the above emission probability in the

successive scattering processes, consisting of absorption

and emission, we see that the source function B(T,t)

can be written in the form

a t -(t--t')/tI dr'

(2.3) B(rt) = f [ll(¶,t') + 12 ('t')]e
-. 00

where a is the albedo for single scattering, i.e., the

probability of quantum survival. Under some limited



conditions Sobolev 181 discussed the solution of

(2.1) - (2.2).

If we write

(2.4) cl = 1/t 2J

where t 2 is the mean free time, the equations of

transfer (2.1) - (2.2) become

(2-5) 1 1 + B(Tt),+ t2 Ot Il

2 2(2.6) + t I + 3('r.,t),2 2

torether.idth the boundary and initial conditions

(2-7) I.1(0,t) = 0, 1 2(TlJt) ID(t)'

(2.8) II(To) = o' I2(Tjo) 0 (o < T e T

where 1,(Tlt) and 12(0,t) are called respectively

the reflected and transmitted intensities, and I 2(T11t)

is the intensity incident on the boundary T = T 1 at

time t.

3. THE PMFLECTED INTMISITY

Let R(-r,,t) denote the coefficient of reflection.

Consider that at time t = to (0 _< to <, t) the incident

radiation falls on the boundary T = T V Because the

optical properties of the medium are constant with

respect to time, for convenience we can put to equal

to zero without loss of generality. Then, by definition,
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(3.1) 1,(. 1 ,t) f R( 1Lt - t')1 2 (lrt')dt',

-co

where I 2 (¶l,t) is given by (2.7).

We shall seek an integral equation for the

reflection coefficient R(lot), making use of the

invariant-imb edding technique.

Imbedding the one-dimensional medium of the optical

thic'ness T in position and time, we have

(3.2) 1I('ri + At + t2A)

= Ii(Tlt) + A-(- Ii(rl,t) + B(¶l,t)) + o(A),

where o(A) is of the order of magnitude of the

infinitesimal A2. From (2.6) we get

(3.3) 12 (Tlt) = I2('l + At - t 2 A)

- I 2 (TIt)A + B(¶l,t)A + o(A).

By initial condition (2.8), (3.3) becomes

(3.4) 12 (¶13 t) = I0 (t - t 2 A) - Io(t)A

St I(t-t')/t1dt'

-00

+a t I -(t-t,)/tl dt'

-00

Making use of (3.1) and ( 3 .4), we obtain
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(3.5) 1(T,) f R(T11  - ' (T1.,tl)dt'

ft R(r11 t -IIOt - t2 A )dt'

--00

A ft R(r1 ,t - t')I0 (tt)dt'

--00

+.ffA f R(Tt - t')dt'

+ a f~ R(Tl,t - t' )dt'
--00

On the other hand, we have

(3.6) 1 1('r + A't + t2 A)

=f t~2 R( I1 + Alt + t2 a - t' )I0(t' )dt'.

-.00

With the aid of (3.5) and (3.6). (3.2) becomes



(3-7) Irt+t2 a R-r1 + A't + t 2A - t' )i0(t' )dt'

--0o

=f R(r13t - t' )10(t' - t2 A)dt'

2A f R(Tl,t - t)Ot~t

"+ a Aft R(¶rt - tjdt tif I (TK* t")e (t-"/ 1 .1"
-00o -- c

" a A t P(T3.t -tl ftl ti 0 (t!e -(lt?/ldt"
~ ft f()t-t)t

--M -00o

"+ a t iJ (¶ 1,t')e (-l/:dt

-.00

'The Dirac delta-function time-dependent case. In

what followrs, w-e shall treat the case of the Dirac delta

time-dependent function, 1i0 (M = F6(t), where F is a

constant and 6 is the Dirac delta-function. The

substitution of I0(t) = F6(t) into (3.7) provides

(3.8) R(T1 + At + t 2 A) = R(T It - t2 A) - 2AR(Tl,t)

"+ a .ft R(Trlt - t')dt' ft t R,,tfe('t)t t

-- 00 -- C

" a. t J lt 1) t / 1 t

--W

a tf R(T , t ')e/l dt' a

--Co
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Hence, letting A -* 0, we get

(39) 6 + 2t 2  +2R

- a e-.- +J R(T,t - t')e dr'
-- 00

+ ft dt ft R(,rlt- t' )R(T, itl)e 1('t)t d.ij
--OO

The conditions imposed on R are

(3.10) R(T1 ,t) - 0 for 0 > t; R(o,t) - 0 for t > 0.

Equation (3.9) is the requisite integral equation

governing the reflection coefficient R(TI1t)

The unit step-function time-dependent case. Consider

a fluorescence problem for which the diffusely reflected

light decreases for a long time after the sudden

switching-off of the external radiation incident on the

boundary, assuming no emitting sources in the medium. In

the time interval (- o0, 0), let the radiation of

constant intensity F fall on the boundary T = TI, and

at time t - 0 let the incident radiation be suddenly

quenched.

Writing

(3.11) 12 (ri 1 t) - FH*(t),

where



(3.12) H*(t) - is t < 0,

0$ t > 0,

we find that the requisite intensity i,(T,,t),

reflected by the end T = T at time t, is given by

(3.13) Ii(1l,t) = Ff R(Tl,t-t')H *(t')dt'

= Ff R(rIU)du,
t

where R1 (¶l,t) is governed by (3.9).

In the next place, consider a Heaviside unit-function

time-dependent case, in which from the instant t = 0

the radiation of constant intensity F falls continuously

on the boundary T - T from the outside. We ask for

the gradual increase of the intensity reflected from the

medium at time t > 0. Writing

(3.14) i2(r1 1 t) - FH(t),

where

(3.15) H(t) - 1"' > 0,

0O, t < O8

we obtain

(3.16) i 1j( 1 ,t) - F f R(r 1 ,st-t')H(t')dt'

.Ft
a F R(,r 1 ,u)du,

0
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which provides the required reflected intensity in this

case.

4. THE TRANSMITTED INTENSITY

Let T(¶1 ,t) denote the coefficient of transmission.

Then we have

(4.1) 12(o1t) f Tltt)I,( l,t, )dr'.

We inquire into an integral equation for T(T.,t).

In a manner similar to that used in the preceding section,

we have

(4.2) I 2 (o,t+t2 A) = I 2 (0,t) + A(- I 2 (O,t) + B(O,t)] + o(A).

From (4.1), we obtain

(4-3 1 (O t~t A)= f t 2AT( l+A,t+t2 &-t' )Io(t')dr'.

On the other hand, using (3.4), we see that the trans-

mitted intensity I 2 (0,t) is given by
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(4f.4) 12 (o*t) f t(, tt1 .l.t
-CO

ft T(¶1 3't-t')I0(tI-t 2 A )dt'

--00

A ft T(T11,t-t'I)1 0O(t)dt'

-COo

+ a . T (r3.,t-t')dt

-.0)

+ a .ft T(T,rl~-t')dt'

*f t' 0(tI)e-('t)t1di
--co

Then, recalling (2.8), (41.3), and (4.4), we find that

(4.2) becomes

-00

M f T(¶11lt-t')I0 (tI-t2t&)dtt - Af T(T13.,t-t')10 (t'dt'

-0C0 --GO

7-0C0 -- w0Ti

-. CD -00

4 i2(00t) + 7ftC 2-(t-t)/2 t + O(A).
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The Dirac delta-function time-dependent case.

Inserting 12 (Tlgt) - F6(t) into (4.5) and letting

A -+O, we have

(4.6) 6 + 2t +2T - a[j t (,¶ 1 t-t')e dt'

+ g.f t dt' f T(T1,t-t' )R(Tlt"l)e -t"

--C -00

along with the boundary and initial conditions

(4.7) T(Tl,t) = 0 ( > 0, 0 > t or t <( TtT),

T(O,t) = F6(t) (t > 0).

The unit step-function time-dependent case. To

begin with, we consider the same quenching fluorescence

problem as that treated in the preceding section.

Under the incident intensity 12 (T1 ,t), given by

(3.11), the requisite intensity transmitted from the

boundary T = 0 at time t is provided by

(4.8) I 2 (Ot) = Ff T(Tl,t-t')H*(tt)dt'

-00

= F T(, 1 u)du,

t

when T(T,,t) satisfies (4.6).

Next, we seek the transmitted intensity when the

boundary T - TI is illuminated by a pencil of external

radiation of intensity I2(Qlrt), given by (3.13).
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Then we have

(4.9) 12(01t) = F f P(.•l,t.-t, )H(t, )dt'

- FJ T(-rl,u)du.

0

5. DISCUSSION

In later papers, the present approach will be

applied to problems of light scattering in a finite

one-dimensional medium with a moving boundary.

Furthermore, the fluorescence problem in which the

distribution of emitting sources in the one-dimensional

medium is a function of T and the external light

source is distinguished at time zero will be considered.

An analytical and computational study of the solutions

of the integral equations for the R-- and T-functions

will also be made.
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